

# **ELECTROMAGNETIC**

# **NIIKA Corp.** Tel: 886-2-8201 5821 Fax: 886-2-8201 5822

E-mail: niika.n2@msa.hinet.net ; export@niika.com

# **Electromagnetic clutches and brakes**



A clutch is a rotary mechanical device that is used to control the transmission of torque from one shaft to another.

A brake is a rotary mechanical device that is used to control the motion of a single shaft.

builds stationary-field electromagnetic friction clutches and brakes that are operated by applying DC voltage across a stationary coll. This type of unit offers several advantages.

- · Ease of operation
- Reliability
- · Wide range of models
- Fast response
- · Simple, efficient control
- Versatility





# **Basic funtions**

#### Coupling/Releasing

A clutch may be used to connect or disconnect a driven shaft to/from a driving shaft, as required, while under load.

#### **Braking/Holding**

A brake is used to dissipate the kinetic energy of a rotating load inertia, and/or to lock a stationary shaft firmly in place.

#### **Speed changing**

Clutches may be integrated into a transmission to allow changes in output speed and torque while the driving shaft remains under load.

#### Reversing

A pair of clutches may be integrated into a reversing transmission to allow changes in the direction of rotation of the output while the driving shaft remains under load.

#### Rapid cycling

Depending upon system inertia, cycle rates of several hundred per minute can be achieved while maintaining precise control. The response of Trantex clutches and brakes is truly exceptional.

#### **Positioning/Indexing**

Clutch/brakes may be used to provide predetermined feeding and automatic positioning.

#### Inching

Clutch/brakes may be used for jogging or inching during machine set-up.

#### Soft starting

A clutch may be used as a soft-start device to reduce motor inrush current, and to reduce impact upon the load.

#### **Overload protection**

A clutch may be used as a torque fuse, to protect driven equipment during an overload condition.



#### **FCD** clutch



- Clutch magnet Contains a fully encapsulated coil. Mounted to a wall or bulkhead.
- Rotor Keyed to a shaft. A part of the magnetic circuit, the pole faces of the rotor attract the armature.
- Armature plate When the coil is energized, the armature plate is drawn up against the rotor with substantial magnetic force, allowing torque to be transmitted to/from the armature plate to the keyed rotor.
- Coil Source of magnetic field when D.C. power is applied.
- Friction material Carefully chosen by Trantex, the friction material greatly extends the life of the unit.
- Round spring Connects/disconnects the armature to/from the load. Assures complete disengagement when current to the coil is interrupted. Transmits torque with no backlash, and enables vertical mounting.
- 7. Retaining ring groove Allows the clutch magnet field to be piloted onto a bearing.
- 8. Keyway The rotor is keyed to the shaft.
- 9. Lead wires Connected to D.C. power.
- Brake magnet Contains coil and friction material, mounted to a bulkhead or wall.
- Brake armature plate When the coil is energiz ed, the armature plate is drawn up against the magnet with considerable magnetic force, allowing torque to be transmitted to the armature hub.
- 3. Armature hub Keyed to the shaft.
- 4. Coil Fully encapsulated.
- Friction material Carefully chosen by Trantex, the friction material greatly extends the life of the unit.
- Round spring Connects/disconnects the armature to/from the load. Assures complete disengagement when current to the coil is interrupted. Transmits torque with no backlash, and enables vertical mounting.
- Retaining ring groove Allows the clutch magnet field to be piloted onto a bearing.
- 8. Keyway Armature hub is keyed to the shaft.
- 9. Lead wires Connected to D.C. power.

#### FBH brake



# **Basic construction**



#### MCS clutch



- Clutch magnet Bearing mounted, contains a fully encapsulated coil. The attached antirotation tab prevents rotation.
- 2. Clutch rotor Keyed to the shaft.
- 3. Armature plate When the coil is energized, the armature plate is drawn up against the rotor with substantial magnetic force, allowing torque to be transmitted to/from the armature plate to the keyed rotor.
- Coil Source of magnetic field when D.C. power is applied.
- Friction material Carefully chosen by Trantex, the friction material greatly extends the life of the unit.
- Uniformly-stressed spring Connects/ disconnects the armature to/from the load. Assures complete disengagement when current to the coil is interrupted. Transmits torque with no backlash, and enables vertical mounting.

**MBF** brake

7. Sealed bearing

- Brake magnet Contains coil and friction material, mounted to a bulkhead or wall.
- Brake armature plate When the coil is energized, the armature plate is drawn up against the magnet with considerable magnetic force, allowing torque to be transmitted to the armature hub.
- 3. Unifromly-stressed spring
- 4. Coil
- 5. Friction material
- 6. Mounting flange Secured to a bulkhead or wall.

#### **Operation of brake**

# Operation

#### Clutch

Energizing the field coil with D.C. power sets up a powerful magnetic field. The lines of magnetic force bridge the air gap between the rotor and the coil creating a powerful electromagnet that pulls in the armature with considerable force. Torque is transmitted from the pulley, through the antibacklash round spring, to the armature. After the load has been accelerated the armature is locked firmly in place against the rotor which







**Operation of clutch** 

#### Brake

Energizing the field coil with D.C. power sets up a powerful magnetic field. The resulting electromagnetic force pulls in the armature with considerable force. Torque is transmitted from the brake magnet, through the antibacklash, round spring to the hub which is keyed to the shaft. Friction between the armature and brake magnet dissipates the kinetic energy of the rotating

load. Deenergizing the coil causes the magnetic field to disappear very rapidly, which allows the armature plate to be retracted away from the brake magnet. This allows the brake to disengage quickly and rapidly, and the shaft to rotate freely.



Energized









Most generally, clutches and brakes are selected according to torque. Accordingly, tables 1, 2, and 3 are provided as a quick selection guide. For applications below 100 rpm, torque can be calculated by use of the torque formula given on page7. For

applications involving relatively high load inertias, and/or high cycle-rates, the heat dissipation capacity of the selected unit must be taken into consideration.

| Table | 1    |     |     |      |     |       |     |       |       |        | Ligh | t/med | dium  | duty a | applic | ation | s safe | ety fa | ctor K | =2.0 |
|-------|------|-----|-----|------|-----|-------|-----|-------|-------|--------|------|-------|-------|--------|--------|-------|--------|--------|--------|------|
| KW    | HP   |     |     |      |     |       | (   | Clutc | h or  | brake  | sha  | ft sp | eed I | RPN    | A      |       |        |        |        |      |
|       |      | 100 | 150 | 200  | 300 | 400   | 500 | 600   | 700   | 800    | 900  | 1000  | 1200  | 1500   | 1800   | 2000  | 2400   | 3000   | 3600   | 4000 |
| 0.1   | 1/6  |     |     |      |     |       |     |       |       |        |      |       |       |        | _      |       | -      |        |        |      |
| 0.125 | 1/6  |     |     |      |     |       |     |       |       |        |      |       | -     |        | -      |       | M      | icro s | ize    |      |
| 0.2   | 1/4  |     |     |      |     |       |     |       |       |        | Size | 0.6   |       |        |        |       |        | -      | (-1)   |      |
| 0.25  | 1/3  |     |     |      |     |       |     |       |       |        |      |       |       |        |        |       |        |        | 1      |      |
| 0.4   | 1/2  |     |     |      |     |       |     |       |       | Size   | 1.2  |       |       |        |        |       |        |        |        | 1    |
| 0.55  | 3/4  |     |     |      |     |       |     |       |       | 170 2  | F    |       |       |        |        |       |        |        |        |      |
| 0.75  | 1    |     |     |      |     |       |     |       | - 3   | ize z. | 5    |       |       |        |        |       |        |        |        |      |
| 1.1   | 11/2 |     |     |      |     |       |     |       |       | Cino E |      |       |       |        |        |       |        |        |        |      |
| 1.5   | 2    |     |     |      |     |       |     |       |       | Size a |      |       | 1     |        |        | 1     |        |        |        |      |
| 2.2   | 3    |     |     |      |     |       |     |       | Size  | e 10   |      |       |       |        |        |       |        |        |        |      |
| 3.7   | 5    |     |     |      |     |       |     |       | Cin   | 20     |      |       |       |        |        |       |        |        |        |      |
| 5.5   | 71/2 |     |     |      |     |       |     |       | 512   | 20-    |      |       |       |        |        |       |        |        |        |      |
| 7.5   | 10   |     |     |      |     |       |     |       |       |        |      |       |       |        |        |       |        |        |        |      |
| 11    | 15   |     | 1.  | 1    | 170 |       |     |       | lze 4 |        |      |       |       |        |        |       |        |        | -      |      |
| 15    | 20   |     |     | ge s | 1   | 10.15 |     |       |       |        |      |       |       |        |        |       |        |        | -      |      |
| 19    | 25   |     |     |      |     |       |     |       |       |        |      |       |       |        |        |       |        |        |        |      |

| _ |   |   |    | - |
|---|---|---|----|---|
| Т | a | h | le | 2 |
|   | ~ | ~ |    | _ |

Heavy duty applications safety factor K=3.5

| KW    | HD   |     |     |     |        |     |     | Clutc  | h or | brake  | e sha   | ft sp | eed I | RPN  | A    |      |      |      |        |      |
|-------|------|-----|-----|-----|--------|-----|-----|--------|------|--------|---------|-------|-------|------|------|------|------|------|--------|------|
| N.W   |      | 100 | 150 | 200 | 300    | 400 | 500 | 600    | 700  | 800    | 900     | 1000  | 1200  | 1500 | 1800 | 2000 | 2400 | 3000 | 3600   | 4000 |
| 0.1   | 1/0  |     |     |     |        |     |     |        |      |        |         |       |       |      |      | 1    |      |      |        |      |
| 0.125 | ¥8   |     |     |     |        |     |     |        |      |        |         |       |       |      |      |      |      | IVI  | Cro si | ze – |
| 0.2   | 1/4  |     |     |     |        |     |     |        |      |        |         |       |       | SIZE | 0.0  |      |      |      |        |      |
| 0.25  | 1/3  |     |     |     | 1      |     |     |        |      | -      | size 1. | 2     |       |      |      |      |      |      |        |      |
| 0.4   | 1/2  |     |     |     |        |     |     |        |      | Size 2 | .5      |       | -     |      |      |      |      |      |        |      |
| 0.55  | 3/4  |     |     |     |        |     |     |        |      | 1      |         |       |       |      |      |      |      |      |        |      |
| 0.75  | 1    |     |     |     |        |     |     | Size 5 | 5    |        |         |       |       |      |      |      |      |      |        |      |
| 1.1   | 11/2 |     |     |     |        |     |     |        |      |        |         |       |       |      |      |      |      |      |        |      |
| 1.5   | 2    |     |     |     |        |     |     |        | Size | 10     |         |       |       |      |      |      |      |      |        |      |
| 2.2   | 3    |     |     |     |        |     |     | Siz    | e 20 |        |         |       |       |      | 1    |      |      |      |        |      |
| 3.7   | 5    |     |     | -   | 1      |     |     | 1      |      |        |         |       |       |      |      |      |      |      |        |      |
| 5.5   | 71/2 |     |     |     |        |     |     | Size 4 | 0    |        |         |       |       |      |      |      |      |      |        |      |
| 7.5   | 10   |     |     |     |        |     |     |        |      |        |         |       |       |      |      |      |      |      |        |      |
| 11    | 15   |     |     | La  | rge si | ze  |     |        |      |        | -       |       |       |      |      |      |      |      |        |      |
| 15    | 20   |     |     |     |        |     |     | T      |      |        |         |       |       | 1    |      |      |      |      |        |      |
| 19    | 25   |     |     |     |        |     |     |        |      |        |         |       |       |      |      |      |      |      |        | 100  |



#### 1. CALCULATION OF REQUIRED TORQUE

A. Torque requirement based upon motor power and motor speed:

$$T = \frac{974 \times KW \times K}{N} = \frac{716 \times HP \times K}{N}$$

Where T = torque of clutch or brake (kg m)

- HP = power rating of motor (HP)
- KW = power rating of motor (KW)
  - N = revolutions per minute of clutch or brake shaft (rpm)
  - K = service or safety factor
- B. Troque required to accelerate/decelerate a given inertia in a given time.

$$T = \frac{GD^2 \times N}{375 \times ta} \pm Te$$

- GD<sup>2</sup>: inertia of all parts to be accelerated /decelerated (kgm<sup>2</sup>)
- N : difference in shaft speed before and after engagement (rpm)
- ta : requried acceleration/deceleration time
- It : torque necessary to turn the shaft and overcome friction. Generally, this adds to the torque requirement of a clutch, but subtracts from the torque requirement of a brake. (An important exception: hoisting and lowering applications, where this torque adds to the brake torque requirement.)

#### 2. CALCULATION OF ENERGY DISSIPATED PER ENGAGEMENT

The energy dissipated by a clutch or brake per engagement can be calculated from:

$$Ee = \frac{GD^2 \times N}{7160} \cdot \frac{Td}{T \pm Tc} (kgm)$$

Td: clutch or brake torque

Generally, Tz adds to the torque requirement of a clutch, but subtracts from the torque requirement of a brake. (An important exception is found in hoisting and lowering applications, where Tz adds to the brake torque requirement.)

#### 3. CALCULATION OF THE TIME NECESSARY TO ACCELERATE /DECELERATE A GIVEN LOAD

The time necessary to accelerate/decelerate a given load is the sum of the response time of the clutch or brake, and the time necessary to accelerate/decelerate the load after the clutch or brake has achieved full torque.

- t = t1 + ta (sec)
- t1: response time, or torque build-up time of clutch or brake (sec)
- ta: acceleration/deceleration time

$$ta = \frac{GD^2 x N}{375 x(T \pm T\ell)}$$
(sec)

As above, T*t* generally adds to the torque requirement of a clutch, but subtracts from the torque requirement of a brake. (Important exception: hoisting and lowering applications where T*t* adds to the brake torque requirement.)

#### Table 3 Safety factor

| Load condition                                    | Type of machines                                                                       | Factor |
|---------------------------------------------------|----------------------------------------------------------------------------------------|--------|
| Low inertia, low cycle, constant load             | Small-sized machine tools, office equipment                                            | 1.5    |
| Normal inertia, normal use                        | Medium-sized machine tools, woodworking machines, small presses, fans                  | 2      |
| High inertia, high speed operation, variable load | Machine tools, medium-sized presses, weaving machines, printing machines, conveyors    | 2.5    |
| High inertia, heavy load accompanied by shock     | Heavy-duty presses, large-sized machine tools, rolling machines, paper making machines | 3.5    |

offers the very finest quality available--a truly exceptional vaulue.Many features that are standard on Trantex unit are optional or not available on competitive units.

#### Standard features include:

- nitrided armatures for long life
- fully encapsulated coils for durability
- fast-release brake armatures for accurate registration
- friction materials carefully chosen for torque and long life
- · wiring that meets CSA standards





#### **Ordering information**



Model FCD Flange-mounted clutch Direct-mounted armature







Rotor Keyway



| S               |        |      |       | _   |     | _   |     |     |     | _   |     | _      | _      | Dimer  | sions  | in mm |
|-----------------|--------|------|-------|-----|-----|-----|-----|-----|-----|-----|-----|--------|--------|--------|--------|-------|
| S               | IZE    |      | 0     | .6  | 1   | .2  | 2.  | 5   | 4   | 5   | 1   | 0      | 2      | 0      | 4      | 0     |
| Static Torque   |        | kgm  | 0.    | 55  | 1   | .1  | 2.  | 2   | 4   | .5  |     | 9      | 1      | 7      | 3      | 6     |
| Exciting Voltag | le     | DC-V | 2     | 4   | 2   | 4   | 2   | 4   | 2   | 4   | 2   | 24     | 2      | 4      | 2.     | 4     |
| Capacity (at 20 | )°C)   | W    | 1     | 1   | 1   | 5   | 2   | 0   | 2   | 5   | 3   | 35     | 4      | 5      | 6      | 0     |
| Max. Revolutio  | n      | RPM  | 50    | 00  | 50  | 00  | 45  | 00  | 40  | 00  | 30  | 000    | 25     | 00     | 20     | 00    |
| Bore            | Dia.   | dH7  | 12    | 15  | 15  | 20  | 20  | 25  | 25  | 30  | 30  | 40     | 40     | 50     | 50     | 60    |
| (Rotor)         | keyway | bxt  | 4x1.5 | 5x2 | 5x2 | 5x2 | 5x2 | 7x3 | 7x3 | 7x3 | 7x3 | 10x3.5 | 10x3.5 | 12x3.5 | 12x3.5 | 15x5  |
|                 | Ar     | 18   | 8     | 0   | 10  | 00  | 12  | 5   | 18  | 50  | 1   | 90     | 23     | 30     | 29     | 00    |
|                 | В      |      | 7     | 2   | 9   | ю   | 11  | 2   | 1:  | 37  | 1   | 75     | 2      | 15     | 27     | 70    |
|                 | CH     | 17   | 3     | 15  | 4   | 2   | 5:  | 2   | 6   | 2   | 8   | 30     | 10     | 00     | 12     | 25    |
|                 | D      |      | 6     | 57  | 8   | 5   | 10  | 6   | 1:  | 33  | 1   | 69     | 2      | 12     | 26     | 54    |
| Diana           | E      |      | 6     | 3   | 8   | 0   | 10  | 00  | 1:  | 25  | 1   | 60     | 20     | 00     | 25     | 50    |
| Diameter        | F      |      | 4     | 6   | 6   | 0   | 7   | 6   | 9   | 5   | 1   | 20     | 1      | 58     | 21     | 10    |
|                 | G      |      | ,     | 6   |     | 8   | 1   | 0   | 1   | 2   |     | 14     | 1      | 6      | 2      | 0     |
|                 | н      |      | 3     | .1  | 4   | .1  | 5.  | 1   | 6   | .1  | e   | 3.1    | 10     | ).2    | 12     | .2    |
|                 | 1      |      | 1     | 8   | 1   | 0   | 1   | 2   | 1   | 5   |     | 17     | 1      | 9      | 2      | 3     |
|                 | к      |      |       | 5   | -   | 5   | 7   |     |     | 7   |     | 10     | 1      | 0      | 1      | 2     |
|                 | L      |      | 2     | 8   | 3   | 1   | 3   | 6   | 40  | ).5 | 4   | 6.5    | 58     | 5.5    | 6      | 4     |
|                 | м      |      | 2     | 2   | 2   | 4   | 2   | 7   | 3   | 0   | 3   | 34     | 4      | 0      | 4      | 7     |
|                 | P      |      | ;     | 2   | 2   | .5  | 3   | ;   | 3   | .5  |     | 4      | 4      | 5      | e      | 5     |
| Length          | Q      |      | 3     | .5  | 4   | .3  | 5   | 5   | 5   | .5  |     | 6      |        | 7      | 8      | 3     |
|                 | R      |      | 2     | 4   | 26  | 6.5 | 3   | 0   | 33  | 3.5 | 3   | 7.5    | 4      | 4      | 5      | 1     |
|                 | т      |      |       | 2   | 2   | .5  | 3   |     | 3   | .5  |     | 4      | 4      | .5     | 5      | 5     |
| Air Gap         | а      |      | 0     | .2  | 0   | .2  | 0.  | 2   | 0   | .2  | C   | ).3    | 0      | .4     | 0.     | 5     |
| Weight          | kg     |      | 0     | .5  | 0   | .9  | 1.  | 8   | 3   | .7  | 6   | 8.8    | 1      | 3      | 18     | .5    |

# Model FCB Flange-mounted clutch Bearing-mounted armature







Rotor Keyway



|                   |                  |       |      |      |      |       | Diffie | Isions in min |
|-------------------|------------------|-------|------|------|------|-------|--------|---------------|
| SI                | ZE               | 0.6   | 1.2  | 2.5  | 5    | 10    | 20     | 40            |
| Static Torque     | kgm              | 0.55  | 1.1  | 2.2  | 4.5  | 9     | 17     | 36            |
| Exciting Voltage  | DC-V             | 24    | 24   | 24   | 24   | 24    | 24     | 24            |
| Capacity (at 20°C | C) W             | 11    | 15   | 20   | 25   | 35    | 45     | 60            |
| Max. Revolution   | RPM              | 5000  | 5000 | 4500 | 4000 | 3000  | 2500   | 2000          |
| Dia. (Rote        | or, Arm Hbu) dH7 | 12    | 15   | 20   | 25   | 30    | 40     | 50            |
| keyway (F         | Rotor) bxt       | 4x1.5 | 5x2  | 5x2  | 7x3  | 7x3   | 10x3 5 | 12x3.5        |
| Key (Arm Hub)     | WidthxHeight     | 4x4   | 5x5  | 5x5  | 7x7  | 7x7   | 10x8   | 12x8          |
|                   | Ah8              | 80    | 100  | 125  | 150  | 190   | 230    | 290           |
|                   | В                | 72    | 90   | 112  | 137  | 175   | 215    | 270           |
|                   | CH7              | 35    | 42   | 52   | 62   | 80    | 100    | 125           |
|                   | D                | 67    | 85   | 106  | 133  | 169   | 212    | 264           |
| Diameter          | E                | 63    | 80   | 100  | 125  | 160   | 200    | 250           |
|                   | Fj6              | 38    | 45   | 55   | 64   | 75    | 90     | 115           |
|                   | G                | 33    | 38   | 48   | 55   | 65    | 78     | 102           |
|                   | J                | 3-M4  | 3-M4 | 4-M4 | 4-M4 | 4-M5  | 4-M6   | 8-M6          |
|                   | к                | 5     | 6    | 7    | 7    | 10    | 10     | 12            |
|                   | L                | 51.5  | 60   | 71   | 86.5 | 103.5 | 124.5  | 145           |
|                   | м                | 22    | 24   | 27   | 30   | 34    | 40     | 47            |
|                   | N                | 20    | 25   | 30   | 40   | 50    | 60     | 70            |
| Length            | Р                | 2     | 2.5  | 3    | 3.5  | 4     | 5      | 6             |
|                   | Q                | 3.5   | 4.3  | 5    | 5.5  | 6     | 7      | 8             |
|                   | R                | 24    | 26.5 | 30   | 33.5 | 37.5  | 44     | 51            |
|                   | т                | 2     | 2    | 3    | 3    | 4     | 5      | 6             |
| Air Gap           | а                | 0.2   | 0.2  | 0.2  | 0.3  | 0.3   | 0.4    | 0.5           |
| Weight            | kg               | 0.8   | 1.4  | 2.5  | 4.3  | 8     | 15     | 24            |

Model FCH Flange-mounted clutch Hub-mounted armature







Rotor, Hub Keyway



|                  |        |      |       | _   | _    | _   |     |     |     | _   |     | _      |        | Dimen  | sions i | in mm |
|------------------|--------|------|-------|-----|------|-----|-----|-----|-----|-----|-----|--------|--------|--------|---------|-------|
| S                | IZE    |      | 0     | .6  | 1    | .2  | 2.  | .5  | 4   | 5   | 1   | 0      | 2      | 20     | 4       | 0     |
| Static Torque    |        | kgm  | 0.    | 55  | 1    | .1  | 2.  | 2   | 4   | .5  |     | 9      | 1      | 7      | 3       | 6     |
| Exciting Voltage | 9      | DC-V | 2     | 4   | 2    | 4   | 2   | 4   | 2   | 4   | 2   | 24     | 2      | 4      | 2       | 4     |
| Capacity (at 20° | °C)    | W    | 1     | 1   | 1    | 5   | 2   | 0   | 2   | 5   | 3   | 35     | 4      | 5      | 6       | 0     |
| Max. Revolution  | 1      | RPM  | 50    | 00  | 50   | 00  | 45  | 00  | 40  | 00  | 30  | 000    | 25     | 00     | 20      | 00    |
| Bore             | Dia.   | dH7  | 12    | 15  | 15   | 20  | 20  | 25  | 25  | 30  | 30  | 40     | 40     | 50     | 50      | 60    |
| (Rotor, Hub)     | keyway | bxt  | 4x1.5 | 5x2 | 5x2  | 5x2 | 5x2 | 7x3 | 7x3 | 7x3 | 7x3 | 10x3.5 | 10x3.5 | 12x3.5 | 12x3.5  | 15x5  |
|                  | A      | h8   | 8     | 0   | 1    | 00  | 12  | 5   | 15  | 50  | 1   | 90     | 2      | 30     | 29      | 90    |
|                  | В      |      | 7     | 2   | S    | 0   | 11  | 2   | 13  | 37  | 1   | 75     | 2      | 15     | 27      | 70    |
|                  | c      | H7   | 3     | 5   | 4    | 2   | 5   | 2   | 6   | 2   | ε   | 30     | 1      | 00     | 12      | 25    |
|                  | D      |      | 6     | 7   | 8    | 5   | 10  | 6   | 13  | 33  | 1   | 69     | 2      | 12     | 26      | 64    |
| Diameter         | E      |      | 6     | 3   | 8    | 0   | 10  | 00  | 12  | 25  | 1   | 60     | 2      | 00     | 25      | 50    |
|                  | F      |      | 2     | 6   | 3    | 1   | 4   | 2   | 5   | 0   | e   | 65     | 8      | 35     | 10      | 05    |
|                  |        |      | N     | 14  | N    | 15  | м   | 5   | M   | 6   | N   | 16     | N      | 18     | м       | 10    |
|                  | ĸ      |      |       | 5   |      | 6   | 7   |     | 7   |     |     | 10     |        | 10     | 1       | 2     |
|                  |        |      |       | 2   |      | .4  | 6   | 4   | 70  | 5   |     | 4.5    | 10     | 0.5    | 1       | 10    |
|                  | -      |      | 4     | 5   |      |     | 0   |     | 10  |     | 0   | 4.5    | 10     | 0.5    |         | -     |
|                  | M      |      | 2     | 2   | 4    | 4   | 2   | (   | 3   | 0   |     | 54     |        | 10     | 4       | .1    |
|                  | N      |      | 1     | 5   | 2    | 20  | 2   | 5   | 3   | 0   | 3   | 38     | 4      | 15     | 5       | 5     |
| Length           | P      |      | 1     | 2   | 2    | .5  | 3   | 5   | 3.  | 5   |     | 4      | 1.0    | 5      | e       | 6     |
|                  | Q      |      | 3     | .5  | 4    | .3  | 5   | 5   | 5.  | 5   |     | 6      |        | 7      | 8       | 3     |
|                  | R      |      | 2     | 4   | 26   | 6.5 | 3   | 0   | 33  | .5  | 3   | 7.5    | 4      | 4      | 5       | 1     |
|                  | S      |      | 31    | .5  | 3    | 5   | 4   | 1   | 46  | .5  | 5   | 3.5    | 6      | 4.5    | 7       | 5     |
|                  | Т      |      | (     | 5   | 1.19 | 8   | 1   | 0   | 1.  | 2   | 1   | 15     |        | 18     | 2       | 2     |
| Air Gap          | a      |      | 0     | .2  | 0    | .2  | 0.  | 2   | 0.  | 3   | 0   | .3     | C      | .4     | 0.      | .5    |
| Weight           | kg     | 1    | 0     | .6  | 1    | .1  | 2   |     | 3.  | 5   | e   | 5.9    | 1      | 3      | 2       | 2     |

Model MCS Shaft-mounted clutch Direct-mounted armature





Ĵ

Rotor Keyway



Dimensions in mm.

| S               | IZE    |      | 0.6   | 1.2  | 2.5  | 5    | 10    | 20     |
|-----------------|--------|------|-------|------|------|------|-------|--------|
| Static Torque   |        | kgm  | 0.6   | 1.2  | 2.5  | 5    | 10    | 20     |
| Exciting Voltag | je     | DC-V | 24    | 24   | 24   | 24   | 24    | 24     |
| Capacity (at 2  | 0°C)   | w    | 11    | 15   | 22   | 30   | 38    | 50     |
| Max. Revolutio  | on     | RPM  | 5000  | 5000 | 4500 | 4000 | 3000  | 2500   |
| Bore            | Dia.   | dH7  | 12    | 15   | 20   | 25   | 30    | 40     |
| (Rotor)         | keyway | bxt  | 4x1.5 | 5x2  | 5x2  | 7x3  | 7x3   | 10x3.5 |
|                 | А      |      | 74    | 93   | 116  | 144  | 178   | 225    |
|                 | в      |      | 70    | 88   | 110  | 137  | 172   | 217    |
|                 | С      |      | 50    | 60   | 76   | 95   | 120   | 158    |
| Discussion      | D      |      | 36    | 46   | 54   | 67   | 89    | 108    |
| Diameter        | E      |      | 50    | 65   | 70   | 85   | 112   | 132    |
|                 | F      |      | 42    | 58   | 62   | 77   | 100.5 | 120.5  |
|                 | G      |      | 12    | 14   | 16   | 17   | 24    | 24     |
|                 | н      |      | M3    | M4   | M5   | M6   | M8    | M10    |
|                 | к      |      | 4.5   | 5.5  | 6.5  | 6.5  | 9     | 9      |
|                 | L      |      | 30    | 33.5 | 38.5 | 44   | 56    | 66.5   |
|                 | м      |      | 24    | 26.5 | 30   | 33.5 | 43    | 50     |
|                 | N      |      | 6     | 7    | 8.5  | 10.5 | 13    | 16     |
| Length          | 0      |      | 5     | 6.5  | 8    | 11   | 14    | 17.5   |
|                 | Р      |      | 1.6   | 2    | 2    | 2.5  | 3     | 3.2    |
|                 | S      |      | 8     | 9    | 10.5 | 10.5 | 13    | 13     |
| Air Gap         | а      |      | 0.2   | 0.2  | 0.2  | 0.2  | 0.3   | 0.4    |
| Weight          | kg     |      | 0.5   | 1.0  | 1.8  | 3.5  | 6.5   | 11.5   |

12

Model MCS Shaft-mounted clutch Direct-mounted armature







Dimensions in mm.

| S               | IZE        | 40           | 65           | 100           |
|-----------------|------------|--------------|--------------|---------------|
| Static Torque   | kgm        | 40           | 65           | 100           |
| Exciting Voltag | e DC-V     | 24           | 24           | 24            |
| Capacity (at 20 | )°C) W     | 75           | 115          | 150           |
| Max. Revolutio  | n RPM      | 1500         | 1000         | 1000          |
| Bore            | Dia dH7    | 50           | 60           | 70            |
| (Rotor)         | keyway bXt | 12x3.5       | 15x5         | 20x4.9        |
|                 | A          | 155          | 185          | 240           |
|                 | В          | 20           | 23           | 25            |
|                 | с          | 15           | 18           | 18            |
|                 | D          | 28           | 30           | 40            |
|                 | E          | 10.5         | 13           | 13            |
| Length          | F          | 97.7         | 111.7        | 120           |
|                 | G          | 18           | 20           | 30            |
|                 | н          | 4            | 4.5          | 7             |
|                 | J          | 14.5         | 14           | 22            |
|                 | к          | 80           | 90           | 92            |
|                 | L          | 13           | 15           | 22.5          |
|                 | м          | 115          | 150          | 185           |
| Diameter        | N          | 265          | 317          | 416           |
| Diamotor        | 0          | M10x1.5Px20L | M10x1.5Px20L | M12x1.75Px30L |
|                 | Р          | 142          | 180          | 220           |
| Air Gap         | а          | 0.5          | 0.6          | 0.7           |
| Weight          | kg         | 40           | 48           | 68            |









| SIZE               |      | 0.6  | 1.2  | 2.5  | 5    | 10   | 20   | 40   |
|--------------------|------|------|------|------|------|------|------|------|
| Static Torque      | kgm  | 0.55 | 1.1  | 2.2  | 4.5  | 9    | 17   | 36   |
| Exciting Voltage   | DC-V | 24   | 24   | 24   | 24   | 24   | 24   | 24   |
| Capacity (at 20°C) | W    | 11   | 15   | 20   | 25   | 35   | 45   | 60   |
| Max. Revolution    | RPM  | 5000 | 5000 | 4500 | 4000 | 3000 | 2500 | 2000 |
|                    | Ans  | 80   | 100  | 125  | 150  | 190  | 230  | 290  |
|                    | в    | 72   | 90   | 112  | 137  | 175  | 215  | 270  |
|                    | Снв  | 35   | 42   | 52   | 62   | 80   | 100  | 125  |
|                    | E    | 63   | 80   | 100  | 125  | 160  | 200  | 250  |
| Diameter           | F    | 46   | 60   | 76   | 95   | 120  | 158  | 210  |
|                    | G    | 6    | 8    | 10   | 12   | 14   | 16   | 20   |
|                    | н    | 3.1  | 4.1  | 5.1  | 6.1  | 8.1  | 10.2 | 12.2 |
|                    | i    | 8    | 10   | 12   | 15   | 17   | 19   | 23   |
|                    | к    | 5    | 6    | 7    | 7    | 10   | 10   | 12   |
|                    | L    | 22   | 24.5 | 28   | 31   | 35   | 41.5 | 48   |
|                    | Р    | 2    | 2.5  | 3    | 3.5  | 4    | 5    | 6    |
| Length             | Q    | 2.5  | 4.3  | 5    | 5.5  | 6    | 7    | 8    |
|                    | R    | 18   | 20   | 22   | 24   | 26   | 30   | 35   |
|                    | т    | 2    | 2    | 2.5  | 3    | 3    | 4    | 5    |
| Air Gap            | а    | 0.2  | 0.2  | 0.2  | 0.3  | 0.3  | 0.4  | 0.5  |
| Weight             | kg   | 0.4  | 0.6  | 1.0  | 1.8  | 3.5  | 6.5  | 12.5 |









Hub Keywar



| S                | 75           |      | 0     | 6         | 1         | 2   | 2   | 5         | -         | 5   | 1   | 10           | 2            |        | A      | 0    |
|------------------|--------------|------|-------|-----------|-----------|-----|-----|-----------|-----------|-----|-----|--------------|--------------|--------|--------|------|
| Statia Tarqua    | <u>-</u>     | kam  |       |           | 1         | 1   | 2   | 2         | 4         | 5   |     | 0            | -            | 7      | 2      | 6    |
| Static Torque    | 2            | DC V | 0.0   | 1         | 2         | 4   | 2.  | 2         | 4         | .5  |     | 3            | 2            | 4      | 2      | 4    |
| Capacity (at 20) | <del>م</del> | DC-V | 1     | 4         | 1         | 5   | 2   | +         |           | 5   |     | 25           | -            | 5      | 6      | -    |
| Max Baughtion    | 0)           | DDM  | EO    | 00        | 50        | 00  | 45  | 00        | 40        | 00  | 21  | 200          | 25           | 00     | 20     | 00   |
| Revolution       | Dia          | dH7  | 10    | 15        | 15        | 20  | 40  | 00        | 25        | 20  | 20  | 100          | 40           | 50     | 50     | Leo  |
| (Hub)            | kevwav       | bxt  | 4x1.5 | 15<br>5x2 | 15<br>5x2 | 5x2 | 5x2 | 25<br>7x3 | 20<br>7x3 | 7x3 | 7x3 | 40<br>10x3.5 | 40<br>10x3.5 | 12x3.5 | 12x3.5 | 15x5 |
|                  | Ана          |      | 80    | )         | 10        | 00  | 12  | 25        | 15        | 0   | 1   | 90           | 23           | 30     | 29     | 90   |
|                  | В            |      | 73    | 2         | 9         | 0   | 11  | 12        | 13        | 7   | 1   | 75           | 2'           | 15     | 2      | 70   |
| Diameter         | Снт          |      | 3     | 5         | 4         | 2   | 5   | 2         | 6:        | 2   | 1   | 30           | 10           | 00     | 1:     | 25   |
|                  | E            |      | 5     | 3         |           | 6   | 10  | ,         | 12        | 5   | 1   | 60           | 20           | 0      | 23     | 2    |
|                  |              | -    | 25    | 5         | 28        | 2.5 | 3   | 3         | 3.        | 7   |     | 10           | 50           | 5      | 50     | 2    |
|                  | N            |      | 1     | 5         | 2         | :0  | 2   | 5         | 31        | )   |     | 38           | 4            | 5      | 5      | 5    |
| Length           | Р            |      | 2     |           | 2         | .5  | :   | 3         | 3.        | 5   |     | 4            | 5            | 5      |        | 5    |
|                  | a            |      | 3.    | 5         | 4         | .3  | ŧ   | 5         | 5.        | 5   |     | 6            | 7            | 7      |        | 8    |
|                  | R            |      | 18    | 3         | 2         | 20  | 2   | 2         | 24        | 4   | :   | 26           | 3            | 0      | 3      | 5    |
| Air Gap          | а            |      | 0.    | 2         | 0         | .2  | 0.  | 2         | 0.        | 3   | C   | 0.3          | 0            | .4     | 0      | .5   |
| Weight           | kg           |      | 0.    | 5         | 0         | .8  | 1.  | .4        | 2.        | 4   | 4   | .8           | 9            | .5     | 14     | 1.2  |

Model FBH Flange-mounted brake Hub-mounted armature outer boss











| S               | IZE    |      | 0     | .6  | 1   | .2  | 2.  | 5   |     | 5   | 1   | 0      | 2      | 0      | 4      | 0    |
|-----------------|--------|------|-------|-----|-----|-----|-----|-----|-----|-----|-----|--------|--------|--------|--------|------|
| Static Torque   |        | kgm  | 0.5   | 55  | 1.  | 1   | 2.  | 2   | 4   | .5  |     | 9      | 17     | .5     | 3      | 6    |
| Exciting Voltag | le     | DC-V | 2     | 4   | 2   | 4   | 2   | 4   | 2   | 4   | 1   | 24     | 2      | 4      | 2      | 4    |
| Capacity (at 20 | )°C)   | W    | 1     | 1   | 1   | 5   | 2   | 0   | 2   | 5   | :   | 35     | 4      | 5      | 6      | 0    |
| Max. Revolutio  | n      | RPM  | 50    | 00  | 50  | 00  | 45  | 00  | 40  | 00  | 30  | 000    | 25     | 00     | 20     | 00   |
| Bore            | Dia.   | dH7  | 12    | 15  | 15  | 20  | 20  | 25  | 25  | 30  | 30  | 40     | 40     | 50     | 50     | 60   |
| (Hub)           | keyway | bxt  | 4x1.5 | 5x2 | 5x2 | 5x2 | 5x2 | 7x3 | 7x3 | 7x3 | 7x3 | 10x3.5 | 10x3.5 | 12x3.5 | 12x3.5 | 15x5 |
|                 | Ani    | 3    | 8     | 0   | 10  | 00  | 12  | 5   | 18  | 50  | 1   | 90     | 23     | 30     | 29     | 0    |
|                 | В      |      | 7     | 2   | 9   | D   | 11  | 2   | 1:  | 37  | 1   | 75     | 21     | 15     | 27     | 0    |
|                 | Сн     | 7    | 3     | 5   | 4   | 2   | 5   | 2   | 6   | 2   | 8   | 80     | 10     | 00     | 12     | 25   |
| Diameter        | E      |      | 6     | 3   | 8   | 0   | 10  | 0   | 1:  | 25  | 1   | 60     | 20     | 00     | 25     | 50   |
|                 | F      |      | 2     | 6   | 3   | 1   | 4   | 2   | 5   | 0   | e   | 5      | 8      | 5      | 10     | )5   |
|                 | L      |      | м     | 4   | м   | 5   | м   | 5   | N   | 16  | N   | 16     | м      | 18     | M      | 10   |
|                 | к      |      | E     | 5   | 6   |     | 7   |     |     | 7   | 1   | 0      | 1      | 0      | 1      | 2    |
|                 | L      |      | 3     | 7   | 44  | .5  | 5   | 3   | 6   | 1   | 7   | 3      | 86     | .5     | 10     | )3   |
|                 | N      |      | 1     | 5   | 2   | 0   | 2   | 5   | 3   | 0   | 3   | 88     | 4      | 5      | 5      | 5    |
|                 | Р      |      | 2     | 2   | 2.  | 5   | 3   |     | 3   | .5  |     | 4      |        | 5      | e      | \$   |
| Length          | Q      |      | 3.    | 5   | 4,  | 3   | 5   |     | 5   | .5  |     | 6      | 7      | 7      | 8      | \$   |
|                 | R      |      | 1     | 8   | 2   | 0   | 2   | 2   | 2   | 4   | 2   | 26     | 3      | 0      | 3      | 5    |
|                 | S      |      | 25    | .5  | 28  | .5  | 3   | 3   | З   | 7   | 4   | 2      | 50     | ).5    | 5      | 9    |
|                 | т      |      | 6     | 6   | 8   |     | 1   | 0   | 1   | 2   | 1   | 5      | 1      | 8      | 2      | 2    |
| Air Gap         | а      |      | 0.    | 2   | 0.  | 2   | 0.  | 2   | 0   | .3  | 0   | .3     | 0.     | .4     | 0.     | 5    |
| Weight          | kg     |      | 0.    | 5   | 0.  | 8   | 1.  | 4   | 2   | .4  | 4   | .8     | 9.     | .5     | 14     | .2   |

17

Model MBF Flange-mounted brake Direct-mounted armature







| 0175               |      | 0.0  | 4.0  | 0.5  | -    | 10   | 20   |
|--------------------|------|------|------|------|------|------|------|
| SIZE               |      | 0.6  | 1.2  | 2.5  | Э    | 10   | 20   |
| Static Torque      | kgm  | 0.6  | 1.2  | 2.5  | 5    | 10   | 20   |
| Exciting Voltage   | DC-V | 24   | 24   | 24   | 24   | 24   | 24   |
| Capacity (at 20°C) | W    | 11   | 15   | 22   | 30   | 38   | 50   |
| Max. Revolution    | RPM  | 5000 | 5000 | 4500 | 4000 | 3000 | 2500 |
|                    | В    | 70   | 88   | 110  | 137  | 172  | 217  |
|                    | с    | 50   | 60   | 76   | 95   | 120  | 158  |
|                    | D    | 36   | 46   | 54   | 67   | 89   | 108  |
|                    | E    | 35   | 45   | 52   | 65   | 80   | 100  |
| Diameter           | F    | 90   | 110  | 135  | 165  | 210  | 265  |
|                    | G    | 80   | 98   | 122  | 150  | 190  | 240  |
|                    | н    | МЗ   | M4   | M5   | M6   | M8   | M10  |
|                    | к    | 4.5  | 5.5  | 6.5  | 6.5  | 9    | 11   |
|                    | L    | 25   | 29   | 32.5 | 36.5 | 41   | 48.5 |
|                    | м    | 19   | 22   | 24   | 26   | 28   | 32   |
| Length             | N    | 6    | 7    | 8.5  | 10.5 | 13   | 16.5 |
|                    | o    | 5    | 6 5  | 8    | 11   | 14   | 17.5 |
|                    | P    | 1.6  | 2    | 2    | 2.5  | 3    | 3.2  |
| Air Gap            | а    | 0.2  | 0.2  | 0.2  | 0.2  | 0.3  | 0.4  |
| Weight             | kg   | 0.35 | 0.7  | 1.35 | 2.3  | 4.5  | 8.2  |

Model HB Armature hub For MCF, MCS, MBF mounted







| S        | SIZE     | 0.    | 6   | 1.2 |     | 2.5 |     | 9   | 5   | 1   | 0      | 2      | 20     |
|----------|----------|-------|-----|-----|-----|-----|-----|-----|-----|-----|--------|--------|--------|
| Bore     | Dia. dH7 | 12    | 15  | 15  | 20  | 20  | 25  | 25  | 30  | 30  | 40     | 40     | 50     |
| keyway   | bxt      | 4x1.5 | 5x2 | 5x2 | 5x2 | 5x2 | 7x3 | 7x3 | 7x3 | 7x3 | 10x3.5 | 10x3.5 | 12x3.5 |
|          | А        | 6     | 0   | 7   | 2   | 9   | 0   | 1   | 10  | 1   | 40     | 18     | 80     |
|          | В        | 2     | 7   | 3   | 2   | 4   | 2   | 5   | 0   | e   | 15     | 8      | 0      |
| Diameter | с        | 5     | 0   | 6   | 0   | 7   | 6   | g   | 5   | 1   | 20     | 1      | 58     |
|          | E        | м     | 3   | M   | 14  | M   | 15  | N   | 16  | N   | 18     | м      | 10     |
|          | F        | м     | 4   | M   | 15  | M   | 15  | N   | 16  | N   | 18     | N      | 18     |
| 10.0     | L        | 1     | 5   | 2   | 0   | 2   | 5   | 3   | 0   | 4   | 0      | 4      | 8      |
| Length   | м        | 6     | 6   | ,   | 7   | 9   | 9   | 1   | 1   | 1   | 5      | 1      | 8      |
|          | N        | 4.    | 5   | ŧ   | 5   | 6   | 5   | 7   | .5  | 1   | 0      | 1      | 2      |
| Weight   | g        | 5     | 3   | 7   | 4   | 14  | 17  | 20  | 60  | 5   | 40     | 11     | 50     |

Dimensions in mm.



Model FCD clutch, wall-mounted, armature attached to V-pulley.



Model FCB clutch, wall-mounted, sprocket mounted on armature hub.



Model FBN brake, wall-mounted, hub to the inside.



Model FCH clutch-coupling, wall-mounted, couples-two shafts.



Model **MCS** clutch, shaft-mounted, armature attached to V-pulley.



Model MBF brake, wall-mounted, hub to the outside.





# **Electromagnetic clutch-brake enclosed combinations**

# **Product information**

The new models **FMP**, **TMP**, **MMP** type 7~250 are the combinations of brake and clutch. Due to they totally enclosed construction, they are environmentally resistant. There is no interference of torque between the clutch and brake. Also, the air gap adjustment can be easily completed. There are many other features in unit.

#### O High resistance to environment

Due to its totally enclosed construction, it responds to an hostile environment such as water, oil or dust.

#### O High torque

Compact design, with high torque capacity.

#### Wiring · Connection

Since this unit has a polarity, follow the face plate of the terminal block to connect. Alead wire to connect to the terminal block must be below (2.5mm<sup>2</sup>).

#### **O** Reliable operation

The clutch and braking armature are combined into two common pieces.

#### O Simple adjustment

The air gap adjustment can be easily completed by loosening the bolt and turning the ring. The conventional adjustment by disassembling is not necessary.

#### O Free choice of mounting

By changing the mounting foot position, the terminal block can be moved from right to left or up and down. The center height can be selected from two high-low levels.







#### Allowable work characteristics



#### Allowable frequency [operations/hour]

Unit [s]

#### **Operating characteristics**

The two armatures are common to both clutch and brake. They are moved from one side to another by the magnetic pull of respective stators.

For this reason, there is no interference of torque between the clutch and brake.

Therefore, reliable and economical operation can be performed.



#### **Operating time**

|       |        | Cluto | h     | Brake  |       |       |  |  |  |
|-------|--------|-------|-------|--------|-------|-------|--|--|--|
| Model | ta=tar | tap   | tp    | ta=tar | tap   | tp    |  |  |  |
| 07    | 0.018  | 0.033 | 0.053 | 0.018  | 0.023 | 0.043 |  |  |  |
| 15    | 0.023  | 0.068 | 0.093 | 0.023  | 0.028 | 0.053 |  |  |  |
| 30    | 0.033  | 0.083 | 0.118 | 0.033  | 0.048 | 0.083 |  |  |  |
| 60    | 0.048  | 0.118 | 0.168 | 0.048  | 0.073 | 0.123 |  |  |  |
| 120   | 0.063  | 0.143 | 0.208 | 0.063  | 0.083 | 0.148 |  |  |  |
| 250   | 0.085  | 0.165 | 0.230 | 0.085  | 0.105 | 0.170 |  |  |  |

The above value indicates the value obtained when the operation is performed on the direct-current side. In the case of alternating current, it is more than 3 times slower.

te --- Armature suction time: Time from when the current is applied till when the armature is suctioned and torque Is generated.

tep — Torque increment time: Time from when torque is generated till when it becomes 80% of the rated torque.

t<sub>P</sub> — Torque rise time: Time from when it becomes 80% of the rated torque.

tar - Armature release time: Time from when the current is shut off till when the armature returns to the position before suction.



#### Air gap adjustment

Clutches and brakes transmit torque by friction force. The air gap is enlarged by long term use and wear of the friction surfaces. When it exceeds its limit, it disrupts the performance such as torque or operating characteristics, and therefore the air gap adjustment is necessary. Proper operation can be obtained after air gap adjustment.

| Size | Estimated air gap [mm] | Limit air gap [mm] | Total amount of work before air<br>gap readjustment E⊤[J] | Thickness gauge [mm] |
|------|------------------------|--------------------|-----------------------------------------------------------|----------------------|
| 07   | 0.2                    | 0.5                | 24X10 <sup>6</sup>                                        | 0.2                  |
| 15   | 0.2                    | 0.5                | 40X10 <sup>6</sup>                                        | 0.2                  |
| 30   | 0.2                    | 0.5                | 62X10 <sup>6</sup>                                        | 0.2                  |
| 60   | 0.3                    | 0.75               | 154X10 <sup>6</sup>                                       | 0.3                  |
| 120  | 0.3                    | 0.75               | 250X10 <sup>6</sup>                                       | 0.3                  |
| 250  | 0.3                    | 0.9                | 400X10 <sup>6</sup>                                       | 0.3                  |

#### Time before it needs to be adjusted

#### Air gap readjustment procedure

Please follow the procedure below for the air gap adjustment.

- 1. Loosen the four screws in the housing cover at the output end. Do not remove them. (A)
- 2. Remove terminal box cover and then insert the thickness gauge to bore hole. (B)
- 3. Remove the rubber cover. Insert the flat-head screwdriver into the hole and turn to the direction of an arrow until you can feel a resistance. The appropriate air gap is set. (C) (D)
- 4. Remove the thickness gauge, fit terminal box cover, and tighten screws on the terminal box cover. (E)
- 5. Tighten the four screws in the housing cover at the output end, and place the rubber cover.
- The air adjustment is completes. (F)





The **FMP** clutch/brake module comes preassembled and preadjusted and combines clutch and brake with an in-line split shaft. The housing of this foot-mounted, drip-proof module is made from aluminum. Because both input and output shafts are supported by a pair of sealed ball bearings, this module is suitable for parallel-shaft drives where overhung loads are present, as well as in-line shaft drives that ues flexible couplings. The FMP clutch/brake module excels in high-cycle-rate applications, is easy to install, and requires little maintenance.



Model FMP Clutch/brake module enclosed, foot-mounted, split-shaft







|                  |              |      |      | _    |      |      | _    | -    |      | 1   | _    |      | Dimer | sions | in mr |
|------------------|--------------|------|------|------|------|------|------|------|------|-----|------|------|-------|-------|-------|
| SI               | ZE           |      | 7    | 1    | 5    | 3    | 0    | 6    | 0    | 1   | 20   | 2    | 50    | 40    | 00    |
| Static Torque    | kgm          | 0    | 7    | 1.   | 5    | :    | 3    |      | 6    | 1   | 2    | 2    | 4     | 4     | 0     |
| Exciting Voltage | DC-V         | 2    | 4    | 2    | 4    | 2    | 4    | 2    | 4    | 2   | 4    | 2    | 4     | 2     | 4     |
| Capacity (at 20° | C)W C/B      | 15   | 11   | 20   | 16   | 28   | 21   | 35   | 28   | 50  | 38   | 60   | 50    | 85    | 60    |
| Max. Revolution  | RPM          | 50   | 00   | 5000 | 4500 | 4500 | 4000 | 4000 | 3000 | 30  | 00   | 25   | 00    | 25    | 00    |
| Shaft Dia.       | Dj6          | 11   | 14   | 14   | 19   | 19   | 24   | 24   | 28   | 28  | 38   | 38   | 42    | 4     | 2     |
| Key (Shaft)      | WidthxHeight | 4x4  | 5x5  | 5x5  | 6x6  | 6x6  | 8x7  | 8:   | x7   | 8x7 | 10x8 | 10x8 | 12x8  | 12    | ×8    |
|                  | A            | 1    | 00   | 13   | 30   | 1    | 60   | 18   | 30   | 2   | 23   | 25   | 50    | 30    | 00    |
|                  | В            | 8    | 5    | 1.   | 0    | 1.   | 40   | 16   | 50   | 1:  | 95   | 2    | 15    | 20    | 67    |
|                  | C            | 63   | 71   | 71   | 80   | 80   | 90   | 90   | 100  | 112 | 132  | 16   | 50    | 19    | 95    |
| Length           | D            | 110  | 118  | 130  | 139  | 150  | 160  | 174  | 184  | 218 | 238  | 29   | 92    | 3     | 56    |
|                  | E            | 8    | 6    | 9    | 5    | 1    | 09   | 13   | 30   | 1:  | 54   | 17   | 76    | 20    | 02    |
|                  | F            | 9    | 4    | 11   | 8    | 1.   | 40   | 16   | 38   | 2   | 12   | 26   | 64    | 32    | 22    |
|                  | G            | 1    | 8    | 2    | 2    | 2    | 8    | 3    | 0    | 3   | 3    | 4    | 7     | 5     | 0     |
|                  | н            | 11   | 14   | 14   | 19   | 19   | 24   | 24   | 28   | 28  | 38   | 38   | 42    | 4     | 2     |
| Diameter         | 0            | 4    | 9    | 5    | 5    | 6    | 7    | 7    | 7    | S   | 97   | 12   | 24    | 1     | 55    |
|                  | Q            | 24.5 | 31.5 | 32   | 42   | 43   | 53   | 52   | 62   | 62  | 82   | 82   | 112   | 1     | 12    |
|                  | R            | 33   | 40   | 42   | 52   | 62   | 72   | 72   | 82   | 82  | 102  | 105  | 135   | 13    | 35    |
|                  | S            | 1    | 17   | 1;   | 36   | 1    | 51   | 18   | 30   | 2   | 16   | 27   | 76    | 3     | 70    |
|                  | T            | 183  | 197  | 220  | 240  | 275  | 295  | 324  | 344  | 380 | 420  | 486  | 546   | 64    | 40    |
|                  | U            | 23   | 30   | 30   | 40   | 40   | 50   | 50   | 60   | 60  | 80   | 80   | 110   | 1     | 10    |
| 1.0              | W            | 1    | 00   | 1    | 10   | 1    | 35   | 1    | 55   | 1   | 85   | 2:   | 30    | 2     | 70    |
| Length           | X            | 1    | 15   | 13   | 30   | 1    | 60   | 18   | 30   | 2   | 15   | 26   | 52    | 3     | 12    |
|                  | Y            | 18   | 3.5  | 2    | 5    | 3    | 30   | 34   | 1.5  | 3   | 7.5  | 4    | 8     | 7     | 5     |
|                  | Z            | 1    | 8    | 2    | 5    | 3    | 30   | 31   | .5   | 3   | 8    | 4    | 5     | 6     | 0     |
|                  | d            |      | 7    |      | 9    |      | 9    | 1    | 1    | 1   | 3    | 1    | 4     | 1     | 7     |
|                  | e            |      | 3    | 3    | 2    |      | 4    |      | 5    |     | 6    | 1    | 3     | 1     | в     |
|                  | f            | 0    | .2   | 0    | .2   | 0    | .2   | 0    | 2    | 0   | .3   | 0    | 4     | 0     | 4     |
| Discustor        | g            | N    | 16   | N    | 18   | N    | //8  | M    | 10   | M   | 12   | M    | 16    | М     | 16    |
| Diameter         | h            | M4   | M5   | M5   | M6   | M6   | M8   | M8   | M10  | M10 | M12  | M12  | M16   | М     | 16    |
| Weight           | kg           | 2    | .6   | 4    | .5   |      | 8    | 1    | 3    | 23  | 3.5  | 4    | 6     |       |       |



The **MMP** clutch/brake module comes preassembled and preadjusted, and combines a clutch and a brake on a split shaft. This foot-mounted module has a female input flange that make it possible to mount an I.E.C. standard motor directly to the input of the clutch/brake. The double-bearing-supported output shaft is suitable for parallel-shaft drives or for mounting a flexible coupling. The drip-proof housing is made of aluminum; all bearings are sealed. These units are suitable for high-cycle-rate applications.





Model MMP Clutch/brake module enclosed, single-flange-mounted, split-shaft







|                  |        |                                |      |      | _   |     |     |     | _   | _   | _   |      | _    | Dime | nsions | in mm |
|------------------|--------|--------------------------------|------|------|-----|-----|-----|-----|-----|-----|-----|------|------|------|--------|-------|
| S                | ZE     |                                | 7    | 7    | 1   | 5   | 3   | 0   | 6   | 0   | 1   | 20   | 2    | 50   | 40     | 00    |
| Static Torque    |        | kgm                            | 0    | .7   | 1   | .5  |     | 3   | (   | 6   | 1   | 2    | 2    | 4    | 2      | 4     |
| Exciting Voltage |        | DC-V                           | 2    | 4    | 2   | 4   | 2   | 4   | 2   | 4   | 2   | 4    | 2    | 4    | 2      | 4     |
| Capacity (at 20° | W(D'   | C/B                            | 15   | 11   | 20  | 16  | 28  | 21  | 35  | 28  | 50  | 38   | 60   | 50   | 85     | 60    |
| 1                | Dia    | d <sup>G7</sup>                | 11   | 14   | 14  | 19  | 19  | 24  | 24  | 28  | 28  | 38   | 38   | 42   | 42     | 42    |
| Input Bore       | keyway | bxt                            | 4x4  | 5x5  | 5x5 | 6x6 | 6x6 | 8x7 | 8:  | x7  | 8x7 | 10x8 | 10x8 | 12x8 | 12x8   | 12x8  |
|                  | Dia    | D <sup>1j6</sup>               | 11   | 14   | 14  | 19  | 19  | 24  | 24  | 28  | 28  | 38   | 38   | 42   | 42     | 42    |
| Output Shaft     | keyway | b <sup>1</sup> xt <sup>1</sup> | 4x4  | 5x5  | 5x5 | 6x6 | 6x6 | 8x7 | 8>  | (7  | 8x7 | 10x8 | 10x8 | 12x8 | 12x8   | 12x8  |
|                  | A      |                                | 8    | 6    | 9   | 5   | 10  | )9  | 13  | 30  | 1.  | 54   | 1    | 76   | 20     | 02    |
|                  | B      |                                | 9    | 14   | 1   | 18  | 14  | 10  | 16  | 58  | 2   | 12   | 20   | 64   | 32     | 22    |
|                  | C      |                                | 110  | 118  | 130 | 139 | 150 | 160 | 174 | 184 | 218 | 238  | 29   | 92   | 35     | 56    |
|                  | D      |                                | 63   | 71   | 71  | 80  | 80  | 90  | 90  | 100 | 112 | 132  | 16   | 50   | 19     | 95    |
|                  | E      |                                | 1    | 8    | 2   | 2   | 2   | 8   | 3   | 0   | 3   | 3    | 4    | 7    | 5      | iO    |
|                  | F      |                                | 8    | 5    | 1   | 10  | 14  | 10  | 16  | 50  | 1   | 95   | 2    | 15   | 20     | 37    |
|                  | G      |                                | 1(   | 00   | 1:  | 30  | 16  | 30  | 18  | 30  | 2   | 23   | 2    | 50   | 30     | 00    |
|                  | н      |                                | 156  | 163  | 190 | 200 | 236 | 246 | 274 | 284 | 320 | 340  | 395  | 425  | 53     | 30    |
|                  | 1      | 1                              | 33   | 40   | 42  | 52  | 60  | 70  | 72  | 82  | 82  | 102  | 105  | 135  | 1:     | 35    |
| Length           | J      |                                | 24.5 | 31.5 | 32  | 42  | 43  | 53  | 52  | 62  | 62  | 82   | 82   | 112  | 1      | 12    |
|                  | K      |                                | 1    | 0    | 1   | 0   | 1   | 3   | 1   | 3   | 1   | 3    | 2    | 3    | 2      | 3     |
|                  | L      |                                | 23   | 30   | 30  | 40  | 40  | 50  | 50  | 60  | 60  | 80   | 80   | 110  | 1      | 10    |
|                  | M      |                                | 18   | 3.5  | 2   | 5   | 3   | 0   | 34  | .5  | 3   | 7.5  | 4    | 8    | 7      | 5     |
|                  | N      |                                | 10   | 00   | 1   | 10  | 1:  | 35  | 15  | 55  | 1.  | 85   | 23   | 30   | 2      | 70    |
|                  | 0      | _                              | 1    | 15   | 1;  | 30  | 16  | 50  | 18  | 30  | 2   | 15   | 26   | 52   | 3      | 12    |
|                  | P      |                                |      | 3    | 3   | .2  | 4   | +   |     | 2   |     | 6    | 2    | 5    | 2      | 5     |
|                  | Q      |                                | 1    | 0    | 2   | C   | 3   | 0   | 31  | .5  | 3   | 50   | 4    | 5    | 0      | 0     |
|                  | R      |                                | 0    | 4    |     | 4   |     | 2   | -   | 1   | 0   | 2    | 0    | 2    | 0      | 5     |
|                  | T      |                                | 0    | . 2  | 0   | 2   | 0   | 2   | 0   | 2   | 0   | 3    | 0    | .4   | 0      | .5    |
|                  | 9      | _                              | N    | 18   | MR  | M10 | M10 | M12 | M10 | M12 | M   | 12   | M12  | M16  | M      | 16    |
|                  | h      |                                | N    | 16   | N   | 18  | N   | 8   | M   | 10  | M   | 12   | M    | 16   | M      | 16    |
|                  | d      |                                | N    | 15   | N   | 16  | MG  | M8  | M   | 18  | M   | 10   | M    | 12   | M      | 16    |
|                  | e      |                                |      | 7    |     | 9   |     | 3   | 1   | 1   | 1   | 3    | 1    | 4    | 1      | 7     |
|                  | f      | -                              | 140  | 160  | 160 | 200 | 200 | 250 | 200 | 250 | 250 | 300  | 300  | 350  | 3      | 50    |
| Diameter         | q      |                                | 115  | 130  | 130 | 165 | 165 | 215 | 165 | 215 | 215 | 265  | 265  | 300  | 30     | 00    |
|                  | Ĩ      | -                              | 95   | 110  | 110 | 130 | 130 | 180 | 130 | 180 | 180 | 230  | 230  | 250  | 25     | 50    |
|                  | j      |                                | 6    | 7    | 8   | 5   | 11  | 12  | 11  | 12  | 1-  | 45   | 19   | 95   | 2!     | 50    |
|                  | m      | z = 14                         | 11   | 14   | 14  | 19  | 19  | 24  | 24  | 28  | 28  | 38   | 38   | 42   | 4      | 2     |
|                  | n      |                                | 4    | 9    | 5   | 5   | 7   | 7   | 7   | 8   | 9   | 07   | 1:   | 24   | 1:     | 55    |
|                  | P      |                                | M4   | M5   | M5  | M6  | M6  | M8  | M8  | M10 | M10 | M12  | M12  | M16  | M      | 16    |
| Weight           | kg     |                                |      | 3    | 1   | 5   |     | 9   | 1   | 4   | 2   | 25   | 5    | 4    |        |       |



The **TMP** clutch/brake module comes preassembled and preadjusted, and combines a clutch and a brake on a split shaft. This module has a female input that mounts an I.E.C. standard motor, and a male output that mounts directly to a reduceer or other power transmission component. The dripproof housing is made of aluminum; all bearings are sealed. These units are suitable for high-cycle-rate applications.



Model TMP Clutch/brake module enclosed, double-flange-mounted,split-shaft





NIK

| -               |        | _                |     |     |     |     | -   |     | _   | _   | -   | _    | _    | Dimen | sions | in mn |
|-----------------|--------|------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|-------|-------|-------|
| S               | IZE    |                  | 1   | 7   | 1   | 5   | 3   | 0   | 6   | 0   | 1   | 20   | 2!   | 50    | 4     | 00    |
| Static Torque   |        | kgm              | 0   | .7  | 1   | .5  | 3   | 3   | 6   | 5   | 1   | 2    | 2    | 4     | 4     | 0     |
| Exciting Voltag | e      | DC-V             | 2   | 4   | 2   | 4   | 2   | 4   | 2   | 4   | 2   | 4    | 2    | 4     | 2     | 4     |
| Capacity (at 20 | W(O°C  | C/B              | 15  | 11  | 20  | 16  | 28  | 21  | 35  | 28  | 50  | 38   | 60   | 50    | 85    | 60    |
| Intruit Bore    | Dia.   | d <sup>G7</sup>  | 11  | 14  | 14  | 19  | 19  | 24  | 24  | 28  | 28  | 38   | 38   | 42    | 4     | 2     |
| intput Dore     | Keyway | bxt              | 4x4 | 5x5 | 5x5 | 6x6 | 6x6 | 8x7 | 8:  | x7  | 8x7 | 10x8 | 10x8 | 12x8  | 12    | x8    |
| Output Shaft    | Dia.   | D <sup>1j6</sup> | 11  | 14  | 14  | 19  | 19  | 24  | 24  | 28  | 28  | 38   | 38   | 42    | 4     | 2     |
| output shalt    | Keyway | b'xt'            | 4x4 | 5x5 | 5x5 | 6x6 | 6x6 | 8x7 | 8:  | ×7  | 8x7 | 10x8 | 10x8 | 12x8  | 12    | x8    |
|                 | A      |                  | 8   | 6   | 9   | 5   | 1(  | 09  | 1:  | 30  | 1   | 54   | 17   | 76    | 20    | 02    |
|                 | В      |                  | 9   | 4   | 1   | 18  | 14  | 40  | 16  | 68  | 2   | 12   | 26   | 64    | 32    | 22    |
|                 | C      |                  | 156 | 163 | 190 | 200 | 236 | 236 | 274 | 284 | 320 | 340  | 395  | 425   | 53    | 30    |
|                 | D      |                  | 1   | 33  | 10  | 50  | 18  | 35  | 22  | 24  | 20  | 50   | 31   | 15    | 41    | 18    |
| Length          | E      |                  | 8   | .5  | 1   | 0   | 19  | 9.5 | 2   | 0   | 2   | 0    | 2    | 3     | 2     | 3     |
| Longin          | F      |                  | 23  | 30  | 30  | 40  | 40  | 50  | 50  | 60  | 60  | 80   | 80   | 110   | 11    | 10    |
|                 | G      |                  | 23  | 30  | 30  | 40  | 40  | 50  | 50  | 60  | 60  | 80   | 80   | 112   | 11    | 12    |
|                 | Н      |                  | 1   | 0   | 1   | 0   | 1   | 3   | 1   | 3   | 1   | 6    | 2    | 3     | 2     | 3     |
|                 | 1      |                  |     | 3   | 3   | 5   | 3   | .5  | 3   | .5  | 3   | .5   | 5    | 5     |       | 5     |
|                 | J      |                  | 0   | .2  | 0   | 2   | 0   | .2  | 0   | 2   | 0   | 3    | 0    | 4     | 0.    | .5    |
|                 | K      |                  |     | 2   | 3   | 2   |     | 3   |     | 3   |     | 4    | Ę    | 5     | 5     | 5     |
|                 | L      |                  |     | 4   |     | 4   | Ę   | 5   | 1   | 5   |     | 5    | 6    | 3     | 6     | 5     |
|                 | M      |                  | 140 | 160 | 160 | 200 | 200 | 200 | 200 | 250 | 250 | 300  | 300  | 350   | 35    | 50    |
|                 | N      |                  | 115 | 130 | 130 | 165 | 165 | 215 | 165 | 215 | 215 | 265  | 265  | 300   | 30    | 00    |
|                 | 0      |                  | 95  | 110 | 110 | 130 | 130 | 180 | 130 | 180 | 180 | 230  | 230  | 250   | 25    | 50    |
|                 | P      |                  | 11  | 14  | 14  | 19  | 19  | 24  | 24  | 28  | 28  | 38   | 38   | 42    | 4     | 2     |
| Diameter        | R      |                  | 6   | 57  | 8   | 5   | 1   | 12  | 1.  | 12  | 14  | 45   | 19   | 95    | 25    | 50    |
|                 | S      |                  | 95  | 110 | 110 | 130 | 130 | 180 | 130 | 180 | 180 | 230  | 230  | 250   | 2     | 50    |
|                 | Т      |                  | 1   | 9   | 9   | 11  | 1   | 3   | 11  | 13  | 1   | 3    | 13   | 18    | 1     | 8     |
|                 | W      |                  | N   | 16  | N   | 18  | N   | 18  | M   | 10  | M   | 12   | M    | 16    | М     | 16    |
|                 | X      |                  | M4  | M5  | M5  | M6  | M6  | M8  | M8  | M10 | M10 | M12  | M12  | M16   | М     | 16    |
| Weight          | kg     |                  | 3   | .4  | 5   | 5   | 9   | .7  | 14  | 1.7 | 26  | 5.3  | 6    | 2     |       |       |
|                 | а      |                  | N   | 18  | M8  | M10 | M10 | M12 | M10 | M12 | M   | 12   | M12  | M16   | M     | 16    |

clutch/brake modules are ideally suited for highcycle-rate applications. Each unit is completely preassembled and preadjusted. Service life is enhanced by open frame construction which facilitates air cooling, and by the standard high-quality features shared by all Trantex clutches and brakes such as fully encapsulated coils, nitrided armatures, fast release brake armatures, etc. Trantex clutch/brake modules are available in a wide variety of designs, and are compatible with most motors, reducers, and power transmission components.











Ordering information





The **FMP** clutch/brake module comes preassembled and preadjusted and combines clutch and brake with an in-line split shaft. The housing of this foot-mounted, drip-proof module is made from a light alloy. Because both input and output shafts are supported by a pair of sealed ball bearings, this module is suitable for parallel-shaft drives where overhung loads are present, as well as in-line shaft drives that use flexible couplings. The FMP clutch/brake module excels in high-cycle-rate applications, is easy to install, andrequires little maintenance.



Model **FMP** Clutch/brake module, foot-mounted, split-shaft

![](_page_30_Picture_1.jpeg)

![](_page_30_Figure_2.jpeg)

![](_page_30_Figure_3.jpeg)

| SIZE kam         |              | 0.6  | 1.2  | 2.5  | 5    | 10   | 20   |
|------------------|--------------|------|------|------|------|------|------|
| Static Torque    | kgm          | 0.55 | 1.1  | 2.2  | 4.5  | 9    | 17   |
| Exciting Voltage | e DC-V       | 24   | 24   | 24   | 24   | 24   | 24   |
| Capacity (at 20  | °C) W        | 11   | 15   | 20   | 25   | 35   | 45   |
| Max. Revolutio   | n RPM        | 5000 | 5000 | 4500 | 4000 | 3000 | 2500 |
| Shaft Dia.       | dje          | 11   | 14   | 19   | 24   | 28   | 38   |
| Key (Shaft)      | WidthxHeight | 4x4  | 5x5  | 5x5  | 7x7  | 7x7  | 10x8 |
|                  | A            | 90   | 110  | 140  | 175  | 200  | 240  |
|                  | В            | 65   | 80   | 105  | 135  | 155  | 195  |
|                  | C+0 5        | 65   | 80   | 90   | 112  | 132  | 160  |
|                  | D            | 100  | 125  | 150  | 190  | 230  | 290  |
| Diameter         | G            | 10   | 12   | 15   | 15   | 18   | 20   |
|                  | н            | 13.5 | 15   | 20   | 24   | 28   | 28   |
|                  |              | 6.5  | 9    | 11   | 11   | 14   | 14   |
|                  | L            | M4   | M4   | M6   | M6   | M6   | M10  |
|                  | к            | 27.5 | 32   | 35   | 42   | 45   | 47   |
|                  | L            | 195  | 236  | 295  | 376  | 490  | 616  |
|                  | м            | 105  | 130  | 160  | 185  | 230  | 270  |
| Length           | N            | 90   | 110  | 135  | 160  | 200  | 240  |
|                  | Р            | 52.5 | 63   | 80   | 108  | 145  | 188  |
|                  | т            | 25   | 30   | 40   | 50   | 60   | 80   |
| Weight           | kg           | 2.3  | 4.7  | 7.6  | 14.6 | 25.5 | 48   |

Dimensions in mm.

The **FMR** clutch/brake module features a matched clutch and brake mounted on a bearing-supported through shaft. The housing of this foot-mounted unit is made from a light alloy. Simpler than the FMP module, the FMR module is an open design that allows for optimum heat dissipation. This unit has a bearing-supported input hub that allows both ends of the shaft to be used independently as sources of output power. The unit is fully assembled and preadjusted. All bearings are sealed. Critical alignment is not necessary during installation. The FMP module is suitabe for parallel-shaft drive applications, and is easy to install.

![](_page_31_Picture_1.jpeg)

![](_page_31_Figure_3.jpeg)

Model FMR Clutch/brake module, Foot-mounted through-shaft

![](_page_32_Picture_1.jpeg)

![](_page_32_Figure_2.jpeg)

![](_page_32_Figure_3.jpeg)

|                   |              |      |      |      |      |      | Dinito | Torono in min |
|-------------------|--------------|------|------|------|------|------|--------|---------------|
| SIZ               | E            | 0.6  | 1.2  | 2.5  | 5    | 10   | 20     | 40            |
| Static Torque     | kgm          | 0.55 | 1.1  | 2.2  | 4.5  | 9    | 17     | 36            |
| Exciting Voltage  | DC-V         | 24   | 24   | 24   | 24   | 24   | 24     | 24            |
| Capacity (at 20°C | ) W          | 11   | 15   | 20   | 25   | 35   | 45     | 60            |
| Max. Revolution   | RPM          | 5000 | 5000 | 4500 | 4000 | 3000 | 2500   | 2000          |
| Shaft Dia.        | dje          | 11   | 14   | 19   | 24   | 28   | 38     | 42            |
| Key (Shaft, Hub)  | WidthxHeight | 4x4  | 5x5  | 5x5  | 7x7  | 7x7  | 10x8   | 12x8          |
|                   | A            | 80   | 90   | 110  | 140  | 175  | 200    | 240           |
|                   | в            | 52.5 | 65   | 80   | 105  | 135  | 155    | 195           |
|                   | C+0          | 55   | 65   | 80   | 90   | 112  | 132    | 160           |
|                   | D            | 80   | 100  | 125  | 150  | 190  | 230    | 290           |
|                   | Ej6          | 38   | 45   | 55   | 64   | 75   | 90     | 115           |
|                   | F            | 33   | 37   | 47   | 52   | 62   | 74.5   | 102           |
| Diseaster         | G            | 10   | 10   | 12   | 15   | 15   | 18     | 20            |
| Diameter          | н            | 13.5 | 13.5 | 15   | 20   | 24   | 28     | 28            |
|                   | T            | 6.5  | 6.5  | 9    | 11   | 11   | 14     | 14            |
|                   | J            | M4   | M4   | M6   | M6   | M6   | M10    | M10           |
|                   | J1           | 3-M4 | 3-M4 | 4-M4 | 4-M4 | 6-M5 | 4-M6   | 8-M6          |
|                   | к            | 27.5 | 27.5 | 32   | 35   | 42   | 45     | 45            |
|                   | L            | 181  | 217  | 270  | 330  | 399  | 504    | 632           |
|                   | M            | 90   | 105  | 130  | 160  | 185  | 230    | 270           |
|                   | N            | 75   | 90   | 110  | 135  | 160  | 200    | 240           |
|                   | P            | 65.5 | 78.5 | 98   | 121  | 149  | 187    | 238           |
| Length            | Q            | 40.5 | 48.5 | 62   | 74   | 90   | 117    | 154           |
| Length            | R            | 46.5 | 57   | 72   | 92   | 113  | 142    | 183           |
|                   | S            | 25   | 30   | 40   | 50   | 60   | 80     | 110           |
|                   | т            | 20   | 25   | 30   | 40   | 50   | 60     | 70            |
| Weight            | kg           | 1.7  | 3    | 6.3  | 10.6 | 20   | 37     | 66.6          |

Dimensions in mm.

![](_page_33_Picture_0.jpeg)

The **FMT** clutch/clutch module features a pair of matched clutches mounted on a bearing-supported through shaft. The housing of the FMT module is made from a light alloy, and the open design allows for optimum heat dissipation. All parts are preadjusted and preassembled. It is possible to select either clutch hub as an input, and the shaft as an output, or the shaft as an input, and the clutch hubs as outputs. All bearings are sealed. The FMT module is ideal for building a transmission or a reversing drive, and can achieve high cycle rates.

![](_page_33_Picture_2.jpeg)

![](_page_33_Figure_4.jpeg)

### Model **FMT** Double clutch module, foot-mounted, through-shaft

![](_page_34_Picture_1.jpeg)

![](_page_34_Figure_2.jpeg)

![](_page_34_Figure_3.jpeg)

|                    |                 |      |      |      |      |      | Dimen | sions in mr |
|--------------------|-----------------|------|------|------|------|------|-------|-------------|
| SI                 | ZE              | 0.6  | 1.2  | 2.5  | 5    | 10   | 20    | 40          |
| Static Torque      | kgm             | 0.55 | 1.1  | 2.2  | 4.5  | 9    | 17    | 36          |
| Exciting Voltage   | DC-V            | 24   | 24   | 24   | 24   | 24   | 24    | 24          |
| Capacity (at 20 °C | ) W             | 11   | 15   | 20   | 25   | 35   | 45    | 60          |
| Max. Revolution    | RPM             | 5000 | 5000 | 4500 | 4000 | 3000 | 2500  | 2000        |
| Shaft Dia.         | die             | 11   | 14   | 19   | 24   | 28   | 38    | 42          |
| Key (Shaft, Hub)   | WidthxHeight    | 4x4  | 5x5  | 5x5  | 7x7  | 7x7  | 10x8  | 12x8        |
|                    | A               | 80   | 90   | 110  | 140  | 175  | 200   | 240         |
|                    | В               | 55   | 65   | 80   | 105  | 135  | 155   | 195         |
|                    | C +0            | 55   | 65   | 80   | 90   | 112  | 132   | 160         |
|                    | D               | 80   | 100  | 125  | 150  | 190  | 230   | 290         |
| _                  | E <sup>16</sup> | 38   | 45   | 55   | 64   | 75   | 90    | 115         |
| Diameter           | F               | 33   | 37   | 47   | 52   | 62   | 74.5  | 101.5       |
| Diameter           | G               | 10   | 10   | 12   | 15   | 15   | 18    | 20          |
|                    | н               | 13.5 | 15   | 20   | 24   | 28   | 28    | 28          |
|                    | 1               | 6.5  | 6.5  | 9    | 11   | 11   | 14    | 14          |
|                    | J               | M4   | M4   | M6   | M6   | M6   | M10   | M10         |
|                    | JI              | 3-M4 | 3-M4 | 4-M4 | 4-M4 | 6-M5 | 4-M6  | 8-M6        |
|                    | к               | 27.5 | 27.5 | 32   | 35   | 42   | 45    | 45          |
|                    | L               | 181  | 217  | 266  | 327  | 397  | 492   | 603         |
| 1.0                | м               | 90   | 105  | 130  | 160  | 185  | 230   | 270         |
|                    | N               | 75   | 90   | 110  | 135  | 160  | 200   | 240         |
| Longth             | P               | 65.5 | 78.5 | 98   | 121  | 149  | 187   | 238         |
| Length             | Q               | 40.5 | 48.5 | 58   | 71   | 88   | 105   | 125         |
|                    | R               | 47   | 57   | 72   | 93   | 113  | 143   | 183         |
|                    | S               | 25   | 30   | 40   | 50   | 60   | 80    | 110         |
|                    | т               | 20   | 25   | 30   | 40   | 50   | 60    | 70          |
| Weight             | kg              | 1.9  | 3.6  | 7.2  | 12.5 | 22.5 | 40.5  | 72.6        |

The FMX clutch/clutch/brake module features a pair of matched clutches and a matched brake mounted on a bearing-supported through shaft. The housing of the FMX moudle is made from a light alloy, and the open design allows for optimum heat dissipation. All parts are preadjusted and preassembled, and all bearings are sealed. The clutch hubs are driven at different speeds and/or directions in order to build a transmission or reversing drive. The brake is used to stop and hold the output. The FMX module can be used to achieve high cycle rates.

![](_page_35_Picture_1.jpeg)

![](_page_35_Picture_2.jpeg)

![](_page_35_Figure_4.jpeg)

Model **FMX** Double clutch/brake module, foot-mounted, through-shaft

![](_page_36_Picture_1.jpeg)

![](_page_36_Figure_2.jpeg)

![](_page_36_Figure_3.jpeg)

| SIZ                | E            | 0.6  | 1.2  | 2.5  | 5    | 10   | 20   |
|--------------------|--------------|------|------|------|------|------|------|
| Static Torque      | kgm          | 0.55 | 1.1  | 2.2  | 4.5  | 9    | 17   |
| Exciting Voltage   | DC-V         | 24   | 24   | 24   | 24   | 24   | 24   |
| Capacity (at 20°C) | w            | 11   | 15   | 20   | 25   | 35   | 45   |
| Max. Revolution    | RPM          | 5000 | 5000 | 4500 | 4000 | 3000 | 2500 |
| Shaft Dia.         | dje          | 11   | 14   | 19   | 24   | 28   | 38   |
| Key (Shaft, Hub)   | WidthxHeight | 4x4  | 5x5  | 5x5  | 7x7  | 7x7  | 10x8 |
|                    | A            | 90   | 110  | 140  | 175  | 200  | 240  |
|                    | в            | 60   | 80   | 105  | 135  | 155  | 195  |
|                    | C +0<br>-0.5 | 65   | 80   | 90   | 112  | 132  | 160  |
|                    | D            | 100  | 125  | 150  | 190  | 230  | 290  |
|                    | Eie          | 38   | 45   | 55   | 64   | 75   | 90   |
| Diameter           | F            | 33   | 37   | 47   | 52   | 62   | 74.5 |
| Diamotor           | G            | 10   | 12   | 15   | 15   | 18   | 20   |
|                    | н            | 13.5 | 15   | 20   | 24   | 28   | 28   |
|                    | 1            | 6.5  | 9    | 11   | 11   | 14   | 14   |
|                    | J            | M4   | M4   | M6   | M6   | M6   | M10  |
|                    | JI           | 3-M4 | 3-M4 | 4-M4 | 4-M4 | 6-M5 | 4-M6 |
|                    | к            | 27.5 | 32   | 35   | 42   | 45   | 47   |
|                    | L            | 211  | 246  | 294  | 358  | 440  | 551  |
|                    | м            | 105  | 130  | 160  | 185  | 230  | 270  |
|                    | N            | 90   | 110  | 135  | 160  | 200  | 240  |
| Longth             | P            | 73   | 83   | 99.5 | 124  | 150  | 197  |
| Length             | Q            | 48   | 53   | 59.5 | 74   | 90   | 114  |
|                    | R            | 47   | 57   | 72   | 93   | 114  | 143  |
|                    | S            | 25   | 30   | 40   | 50   | 60   | 80   |
|                    | т            | 20   | 25   | 30   | 40   | 50   | 60   |
| Weight             | kg           | 4.2  | 6.5  | 9.8  | 18   | 30.5 | 60   |

Dimensions in mm.

![](_page_37_Picture_0.jpeg)

The **MMP** clutch/brake module comes preassembled and preadjusted, and combines a clutch and a brake on a split shaft. This foot-mounted module has a female input flange that make it possible to mount an I.E.C. standard motor directly to the input of the clutch/brake. The double-bearing-supported output shaft is suitable for parallel-shaft drives or for mounting a flexible coupling. The drip-proof housing is made of a light alloy; all bearings are sealed. These units are suitable for high-cycle-rate applications.

![](_page_37_Picture_2.jpeg)

![](_page_37_Figure_4.jpeg)

![](_page_38_Picture_0.jpeg)

## Model MMP Clutch/brake module, single-flange-mounted, split-shaft

![](_page_38_Figure_2.jpeg)

![](_page_38_Figure_4.jpeg)

| S               | IZE             | 0.6    | 1.2  | 2.5    | 5    | 10   | 20      |
|-----------------|-----------------|--------|------|--------|------|------|---------|
| Static Torque   | kgm             | 0.55   | 1.1  | 2.2    | 4.5  | 9    | 17      |
| Exciting Voltag | e DC-V          | 24     | 24   | 24     | 24   | 24   | 24      |
| Capacity (at 20 | W (3)           | 11     | 15   | 20     | 25   | 35   | 45      |
| laave Dage      | Dia. dH7        | 11     | 14   | 19     | 24   | 28   | 38      |
| присвоте        | keyway bxt      | 4x12.5 | 5x16 | 6x21.5 | 8x27 | 8x31 | 10x41.5 |
| Output Ohne     | Dia. d1j6       | 11     | 14   | 19     | 24   | 28   | 38      |
| Output Shaft    | keyway b1xt1    | 4x12.5 | 5x16 | 5x21   | 7x27 | 7x31 | 10x41.5 |
|                 | A               | 90     | 110  | 140    | 175  | 200  | 240     |
|                 | В               | 60     | 80   | 105    | 135  | 155  | 195     |
|                 | C +0<br>-0 5    | 65     | 80   | 90     | 112  | 132  | 160     |
|                 | D               | 100    | 125  | 150    | 190  | 230  | 290     |
|                 | D1              | 140    | 160  | 200    | 200  | 250  | 300     |
| Diameter        | E               | 115    | 130  | 165    | 165  | 215  | 265     |
| Diamotor        | F <sup>H7</sup> | 95     | 110  | 130    | 130  | 180  | 230     |
|                 | G               | 10     | 12   | 15     | 15   | 18   | 20      |
|                 | н               | 13.5   | 15   | 20     | 24   | 28   | 28      |
|                 | 1               | 6.5    | 9    | 11     | 11   | 14   | 14      |
|                 | J               | M8     | MB   | M10    | M10  | M12  | M12     |
|                 | JT              | M4     | M4   | M6     | M6   | M6   | M10     |
|                 | к               | 27.5   | 32   | 35     | 42   | 45   | 47      |
|                 | L               | 162    | 195  | 244    | 287  | 380  | 536     |
|                 | M               | 105    | 130  | 160    | 185  | 230  | 270     |
|                 | N               | 90     | 110  | 135    | 160  | 200  | 240     |
| Length          | Р               | 52.5   | 63   | 80     | 108  | 145  | 188     |
| Lengu           | R               | 27     | 32   | 42     | 52   | 62   | 82      |
|                 | S               | 5      | 5    | 5      | 5    | 6    | 6       |
|                 | Т               | 25     | 30   | 40     | 50   | 60   | 80      |
| Weight          | kg              | 2.8    | 5.5  | 9.4    | 16   | 28   | 52      |

![](_page_39_Picture_0.jpeg)

The **TMP** clutch/brake module comes preassembled and preadjusted, and combines a clutch and a brake on a split shaft. This module has a female input that mounts an I.E.C. standard motor, and a male output that mounts directly to a reduceer or other power transmission component. The dripproof housing is made of a light alloy; all bearings are sealed. These units are suitable for high-cycle-rate applications.

![](_page_39_Picture_2.jpeg)

![](_page_39_Figure_4.jpeg)

![](_page_40_Picture_0.jpeg)

![](_page_40_Figure_1.jpeg)

![](_page_40_Figure_2.jpeg)

![](_page_40_Picture_3.jpeg)

|                       | 1000            |        |      |        |      | Dir  | nensions in m |
|-----------------------|-----------------|--------|------|--------|------|------|---------------|
| SIZE                  |                 | 0.6    | 1.2  | 2.5    | 5    | 10   | 20            |
| Static Torque         | kgm             | 0.55   | 1,1  | 2.2    | 4.5  | 9    | 17            |
| Exciting Voltage DC-V |                 | 24     | 24   | 24     | 24   | 24   | 24            |
| Capacity (at 20°      | VC) W           | 11     | 15   | 20     | 25   | 35   | 45            |
| Input Bore            | Dia. dG7        | 11     | 14   | 19     | 24   | 28   | 38            |
|                       | keyway bxt      | 4x12.5 | 5x16 | 6x21.5 | 8x27 | 8x31 | 10x41.5       |
| Output Shaft          | Dia. d1j6       | 11     | 14   | 19     | 24   | 28   | 38            |
|                       | keyway b1xt1    | 4x12.5 | 5x16 | 6x21.5 | 8x27 | 8x31 | 10x41.5       |
| Diameter              | A               | 140    | 160  | 200    | 200  | 250  | 300           |
|                       | в               | 115    | 130  | 165    | 165  | 215  | 265           |
|                       | C <sup>H7</sup> | 95     | 110  | 130    | 130  | 180  | 230           |
|                       | D <sup>h7</sup> | 95     | 110  | 130    | 130  | 180  | 230           |
|                       | н               | M8     | M8   | M10    | M10  | M12  | M12           |
|                       | J               | M4     | M4   | M6     | M6   | M6   | M10           |
|                       | к               | 10     | 10   | 12     | 12   | 14   | 14            |
| Length                | L               | 137    | 165  | 203    | 246  | 270  | 456           |
|                       | м               | 25     | 30   | 40     | 50   | 60   | 80            |
|                       | N               | 3.5    | 3.5  | 3.5    | 3.5  | 4    | 4             |
|                       | 0               | 10     | 10   | 12     | 12   | 16   | 16            |
|                       | Р               | 8      | 8    | 10     | 10   | 12   | 12            |
|                       | R               | 27     | 32   | 42     | 52   | 62   | 82            |
|                       | S               | 5      | 5    | 5      | 5    | 6    | 6             |
|                       | т               | 25     | 30   | 40     | 50   | 60   | 80            |
| Weight                | kg              | 2.8    | 5.6  | 9.5    | 16.8 | 29.5 | 53.5          |

![](_page_41_Picture_0.jpeg)

The SMP clutch/brake combines a matched clutch and brake on a hollow shaft. The open design allows for maximum cooling. The light alloy frame has an antirotation tab, and the armature can be mounted directly to sheaves, sprockets, or gears. Although the design of this unit is space saving and low cost, the SMP is easy to install, and is suitable for highcycle-rate applications.

![](_page_41_Picture_2.jpeg)

![](_page_41_Picture_4.jpeg)

![](_page_42_Picture_0.jpeg)

![](_page_42_Picture_1.jpeg)

![](_page_42_Figure_2.jpeg)

![](_page_42_Figure_3.jpeg)

![](_page_42_Picture_4.jpeg)

|                       |                      |      |      |        | L      | Jimensions in |
|-----------------------|----------------------|------|------|--------|--------|---------------|
| SIZE                  |                      | 2.5  | 5    | 10     | 20     | 40            |
| Static Torque kgm     |                      | 2.2  | 4,5  | 9      | 17     | 36            |
| Exciting Voltage DC-V |                      | 24   | 24   | 24     | 24     | 24            |
| Capacity (at 20°C) W  |                      | 20   | 25   | 35     | 45     | 60            |
| Max. Revolution RPM   |                      | 5000 | 4000 | 3000   | 3000   | 2000          |
| Bore<br>Shaft         | Dia. d <sup>H7</sup> | 20   | 25   | 35     | 40     | 48            |
|                       | keyway bxt           | 5X2  | 7x3  | 10x3.5 | 10x3.5 | 12x3.5        |
| Diameter              | A                    | 125  | 150  | 190    | 230    | 290           |
|                       | В                    | 106  | 133  | 169    | 212    | 250           |
|                       | С                    | 76   | 95   | 120    | 158    | 210           |
|                       | D                    | 54   | 67   | 89     | 108    | 125           |
|                       | E                    | 108  | 133  | 168    | 208    | 250           |
|                       | F                    | 105  | 120  | 153    | 180    | 225           |
|                       | G                    | 90   | 105  | 135    | 160    | 200           |
|                       | н                    | 10   | 12   | 15     | 18     | 21            |
|                       | J                    | M5   | M6   | MB     | M8     | M10           |
|                       | к                    | M5   | M6   | M8     | M10    | M12           |
| Length                | L                    | 97   | 110  | 125    | 145    | 180           |
|                       | м                    | 17   | 20   | 22     | 24     | 30            |
|                       | N                    | 8.5  | 10.5 | 13     | 16.5   | 12            |
|                       | т                    | 6    | 6    | 9      | 10     | 12            |
| Air Gap               | а                    | 0.2  | 0.3  | 0.3    | 0.4    | 0.5           |
| Weight kg             |                      | 3.8  | 4.7  | 10.2   | 18.5   | 40            |

# **Control Circuits**

![](_page_43_Picture_1.jpeg)

Electromagnetic clutches and brakes require DC power. Unless battery power is available, a diode or bridge rectifier is used to convert AC power to DC power. Listed here are a few of the many control circuits that have been used.

#### **Basic control circuits**

The most basic control circuits consist of a DC power supply, an arc suppression circuit, and a switch.

- The coil may be controlled by a simple on/off switch (figure 1.)
- Push buttons may be used to operate a control relay. The capacity of the contacts should be at least 10 times the steady-state load current (figure 2.)

#### **Quick response control circuits**

For applications that demand high cycle rates and/or accurate registration, the following control circuits can be used to reduce significantly the response time of a clutch or brake.

#### Simple overenergization circuit

A simple means of providing a voltage spike to a clutch or brake coil is to place a resistor in series with the coil (figure 3). At the instant after the switch is closed, the current through the closed loop is zero. At the instant, the IR drop (voltage drop) across the resistor is zero, and the entire voltage drop occurs across the coil and the variator. The resistor should be chosen so that the initial voltage across the coil is about 4 times the steady-state coil voltage.

#### Capacitor overenergization circuit

A capacitor may be used in order to reduce coil rise and decay times, which greatly reduces the time that is takes to energize or to deenergize a clutch or brake (figure 4). This is especially apparent with large coils, i.e. large inductances. Cycle rates that can be achieved using this circuit are limited by the time that it takes to charge the capacitor.

#### • Timer-controlled overenergization circuit

It is possible to reduce the coil rise time by placing a timer circuit in parallel with a resistor. At the instant when the coil is to be turned on, the timer circuit provides a shunt around the resistor. At some later time the contacts open, which allows current to flow through the resistor, and reduces the voltage across the coil. Coil decay time is increased by using this circuit.

![](_page_43_Figure_15.jpeg)

| TR: Transformer        | VR: Varistor | RS: Resistor |
|------------------------|--------------|--------------|
| BR: Rectifier (Bridge) | MC: Relay    | F: Fuse      |
| SW: Switch             | C: Capacitor | CL: Clutch   |
| PB: Push Button        | T: Timer     | MB: Brake    |

![](_page_44_Picture_1.jpeg)

When D.C. power is switched off, a momentary reverse voltage (- L dl/dt) is induced by the coil. This voltage is considerably higher than the steady-state voltage that is present across the contacts, and could damage both the contacts and the coil unless arc supression is added to the circuit.

![](_page_44_Figure_3.jpeg)

#### Basic discharging circuit

The device that is used most often is the metal oxide variator (figure 6). During steady state, the variator has a fixed resistance. When the switch is opened, the variator sees the relatively large reverse inductive voltage from the coil (- L dl/dt), which changes the resistance of the variator to a much lower value. This allows a momentary path for current to flow in the loop. The variator allows for fast release times.

![](_page_44_Figure_6.jpeg)

A capacitor and a resistor may be used to absorb the surge of voltage that occurs when the switch is opened. Selection of the proper values of resistance and capacitance may shorten release times (figure 7).

#### Diode arc suppression

A diode may be used to completely absorb the surge of voltage that occurs when the switch is opened (figure 8). Notice however, that the decay time of this circuit, and hence, the armature release time, will be relatively long.

#### Resistor arc suppression

When a diode and resistor are placed in series, as shown (figure 9), no power is absorbed by the resistor when the switch is closed. When the switch is opened, the resistor reduces the reverse voltage across the diode.

![](_page_44_Figure_12.jpeg)

Figure 7.

![](_page_44_Figure_14.jpeg)

Figure 8.

![](_page_44_Figure_16.jpeg)

Figure 9.

![](_page_45_Picture_0.jpeg)

# Marketing & Sales Dept.

![](_page_45_Figure_2.jpeg)

No.17, Lane 187, Qiong- Lin S. Rd., Xin- Zhuang City, New Taipei 242 Taiwan Tel : 886- 2-8201 5821 Fax : 886-2-8201 5822 http://www.airtek-niika.com